

COURSE OUTLINE OF RECORD

Number: MATH A103 TITLE: Statistics for Elementary Teachers

ORIGINATOR: Tab Livingston EFF TERM: Fall 2015

FORMERLY KNOWN AS: DATE OF

OUTLINE/REVIEW: 03-04-2016

CROSS LISTED COURSE: TOP NO: 1701.00

CID:

SEMESTER UNITS: 3.0

HRS LEC: 54.0 **HRS LAB:** 18.0 **HRS OTHER:** 0.0

CONTACT HRS TOTAL: 72.0

STUDY/NON-CONTACT HRS RECOMMENDED: 90.0

CATALOG DESCRIPTION:

Designed for prospective teachers, this course is an activity-based exploration of statistics aligned with the California State Mathematics Standards for K-12. Topics include data representation and analysis, randomization and sampling, measures of central tendency and variability, hypothesizing and statistical inference. May be taken for grades or on a pass-no pass basis. Transfer Credit: CSU.

JUSTIFICATION FOR COURSE:

The California Department of Education Standards for K-12 Mathematics require that probability and statistics be integrated into all levels of the K-12 curriculum. This course is part of a two-year program that will transfer to the Integrated Teacher Education Program (ITEP) at CSULB, an elementary teacher credential track.

PREREQUISITES:

- MATH A030: Intermediate Algebra with a minimum grade of C or better or
- Appropriate OCC Math Placement Score.

COREQUISITES:

ADVISORIES:

ASSIGNED DISCIPLINES:

Mathematics

MATERIAL FEE: Yes [] No [X] Amount: \$0.00

CREDIT STATUS: Noncredit [] Credit - Degree Applicable [X] Credit - Not Degree Applicable []

GRADING POLICY: Pass/No Pass [X] Standard Letter [X] Not Graded []

OPEN ENTRY/OPEN EXIT: Yes [] No [X]

TRANSFER STATUS: CSU Transferable[X] UC/CSU Transferable[] Not Transferable[]

BASIC SKILLS STATUS: Yes [] No [X] LEVELS BELOW TRANSFER: Not Applicable

CALIFORNIA CLASSIFICATION CODES: Y - Not Applicable

NON CREDIT COURSE CATEGORY: Y - Not applicable, Credit Course

OCCUPATIONAL (SAM) CODE: E

REPEATABLE ACCORDING TO STATE GUIDELINES: No [X] Yes [] NUMBER REPEATS:

REQUIRED FOR DEGREE OR CERTIFICATE: No [X] Yes []

GE AND TRANSFER REQUIREMENTS MET:

IGETC Area 2: Mathematical Concepts and Quantitative Reasoning

2A: Mathematic

CSU GE Area B: Scientific Inquiry and Quantitative Reasoning

MATH A103-Statistics for Elementary Teachers

B4 - Mathematics/Quantitative Thinking

OCC AA Gen Ed

AREA A2: LANGUAGE AND RATIONALITY - Communication and Analytical Thinking OCC AS Gen Ed

AREA A2 – ENGLISH COMMUNICATION - Communication and Analytical Thinking

COURSE LEVEL STUDENT LEARNING OUTCOME(S) Supported by this course:

- 1. Illustrate statistical ideas through graphs, manipulatives, and verbal and written explanations.
- 2. Apply valid statistical methods to appropriate applications.
- 3. Work cooperatively, explore, discover, make conjectures and formulate conclusions concerning activity based statistics.

COURSE OBJECTIVES:

- 1. Identify categorical, binary and continuous data types.
- 2. Demonstrate proper data collection designs.
- 3. Analyze data collection designs in order to draw meaningful conclusions from a study.
- 4. Display single variable data in appropriate graphs.
- 5. Compare and contrast different data sets.
- 6. Differentiate between population and sample, and parameter and statistic.
- 7. Analyze sampling methods for bias.
- 8. Implement a simple random sampling.
- 9. Relate properties of randomness to sample size.
- 10. Calculate mean, median, mode and apply appropriately.
- 11. Calculate standard deviation and apply appropriately.
- 12. Use least squares regression as a technique for modeling the relationship between two variables.
- 13. Analyze appropriate use of a hypothesis test.

COURSE CONTENT:

LECTURE CONTENT:

- A. Data and variables
 - 1. In class experiments performed to discover different classifications of data
 - a. categorical data
 - b. binary data
 - c. continuous data
 - 2. Discovery of the distribution of a variable
 - 3. Visually display a distribution
 - a. bar graph
 - b. stemplot
 - c. histogram
 - 4. Verbal description of key features of data
- B. Data Collection
 - 1. Data collection designs for meaningful conclusions
 - 2. Popular vs. sample
 - 3. Parameter vs. statistic
 - 4. Bias in sampling methods
- C. Measures of Center
 - 1. Mean, median and mode for summarizing center of a data distribution
 - 2. Properties of these summary statistics
 - 3. Misunderstandings of these measures

- D. Measure of Spread
 - 1. Five number summary
 - 2. Standard deviation using technology
 - 3. Normal distribution
 - 4. Empirical rule
- E. Comparing distributions
 - 1. Side-by-side stemplots
 - 2. Modified box plot
 - 3. Calculation of z-scores to compare distributions of different variables
- F. Correlation
 - 1. Graphical display of association
 - 2. Correlation coefficient
 - 3. Least squares linear regression using technology
 - 4. Regression lines to make predictions
 - 5. Distinction between association and causation
- G. Introduction to probability
 - 1. Experiments to determine number of possible outcomes
 - 2. Predictions
 - 3. Basic laws of probability
 - 4. Combinations and permutations
- H. Hypothesis testing and scientific method
 - 1. Appropriate choice of null hypothesis
 - 2. Level of significance
 - 3. Interpretation
- I. Basic logic and set theory
 - 1. Common fallacies
 - 2. Set notation and operations

LABORATORY CONTENT:

See course content

METHODS OF INSTRUCTION:

- A. Lecture:
- B. Lab:
- C. Independent Study:

INSTRUCTIONAL TECHNIQUES:

- Interactive learning
- Discovery through guided experiments and activities
- b. Analysis through interaction with other students, with instructor, and with technology
- 2. Lecture
- 3. Demonstration

COURSE ASSIGNMENTS:

Out-of-class Assignments

Written answers are required on test questions, documentation of experiments and detailed conclusions which require analysis and critical thinking. 4 hour.

Writing Assignments

Written answers are required on test questions, documentation of experiments and detailed conclusions which require analysis and critical thinking. 1 hour

Reading Assignments

From assigned text 1 hour.

METHODS OF STUDENT EVALUATION:

Midterm Exam
Final Exam
Short Quizzes
Written Assignments
Projects (ind/group)
Problem Solving Exercises

Demonstration of Critical Thinking:

Grades will be determined by student performance on homework, test, team experiments and creation c a portfolio of experiments.

Required Writing, Problem Solving, Skills Demonstration:

Written answers are required on test questions, documentation of experiments and detailed conclusions which require analysis and critical thinking.

TEXTS, READINGS, AND RESOURCES:

TextBooks:

1. Long, Calvin T. and DeTemple, Duane W. *Mathematical Reasoning for Elementary Teachers*, 6th ed. New York: Addison Wesley, 2011

Other:

1. Other appropriate textbook as chosen by faculty.

LIBRARY:

Adequate library resources include: Print Materials

Non-Print Materials Online Materials Services

Comments:

Attachments:

Attached Files